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Abstract

A scalar field φ charged under a non-SM U(1) symmetry is intro-

duced to the Higgs sector of the Lagrangian with a term mixing φ

with the Higgs field. Both fields develop a vacuum expectation value,

leading to mass mixing between the two states which is diagonalised

into mass eigenstates h′ (identified with the SM Higgs) and φ′. The

Feynman rules and decay width for h′ to the new particle is calcu-

lated. Fermionic fields Ψ1 and Ψ2, also charged under this hidden

U(1), are added via a Yakawa interaction with the φ, and their an-

nihilation cross section to several species of SM particle calculated.

Measured constraints allow the fixing of some parameters, and it is

seen that with judicious choice of the remaining, the fermion’s relic

abundance may satisfy the requirements for Dark Matter abundance.

A more granular study with fewer approximations would allow further

parameterisation of the model.
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Introduction

The purpose of this BSc project has been to investigate some of the mathematics

and techniques of quantum field theory, including the nature of symmetry trans-

formations, gauge theories and Spontaneous Symmetry Breaking (SSB), first by

recreating the Standard Model (SM) Higgs SSB, and then by examining the effect

of adding non-SM symmetries and fields, with a view to proposing a Dark Matter

candidate.

This investigation focused first on the theoretical basis of SSB (Chapter 1),

beginning with the use of a Lagrangian density to model the nature and behaviour

of quantum fields, and the restrictions placed upon its form by the requirements of

symmetry. This led naturally to gauge theories, and then to the Higgs mechanism

and SSB. The effects of SSB on the relevant sectors of the SM Lagrangian were

calculated and the manner in which the gauge bosons gain mass through the

Higgs mechanism observed first-hand.

The second part of the project (Chapter 2) involved introducing a complex

scalar field φ which was charged only under a non-SM symmetry, mixed with the

Higgs field, and which also developed a vacuum expectation value. It was seen

that this creates mass mixing between the two fields, and by diagonalising the

system into mass eigenstates h′ and φ′, the coupling of SM particles to this new

field was observed.

The next task (Chapter 3) was to suppose fermionic fields Ψ1 and Ψ2 (also

charged under the non-SM symmetry) which enter the Lagrangian via a Yakawa

interaction with φ. After the substitution of the mass eigenstates, the Ψs couple

to the Higgs; thus, our φ exists as a ‘portal’ between non-SM and SM particles.

This serves as a demonstration in miniature of the manner in which such portals

have been proposed as routes to Dark Matter candidates.
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Chapter 1

Theoretical background

1.1 Gauge theories

In quantum field theory, a system of fields can be described by its Lagrangian

density L (henceforth referred to as the Lagrangian). The form of the Lagrangian

depends on three qualities: renormalisability, particle content, and symmetry.

The first of these was beyond the scope of this project, but pertinently it restricts

the allowed dimensionality of individual terms. Particle content self-evidently

depends on the phenomena one wishes to study, and governs which fields one

chooses to include.

It is the final requirement of symmetry that has given rise to the need for

gauge theories. When we include a particle’s field in the Lagrangian, we must

specify the symmetry groups under which it is ‘charged’ - in other words, which

transformations will affect the field terms and in what way.

For example, some field PT may be charged under an U(1) symmetry trans-

formation, meaning that it transforms (in a manner parameterised by ω) as

PT → P ′T = e−iωPT . (1.1)

In contrast, a field PU uncharged under that symmetry would transform triv-

ially:

PU → P ′U = PU . (1.2)
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However, while the fields within the Lagrangian may transform under various

groups, the Lagrangian as a whole should not change. This is straightforward

to guarantee when the transformations are global (independent of spacetime po-

sition). For instance, for the operation described in equation 1.1, one could

compensate for the transformation by only including terms (such as |PT |2) where

the complex conjugate cancels out the exponential after transformation.

On the other hand, local transformations (those where ω = ω(x)), cannot

be accounted for in this way. For example, consider the presence of a spacetime

derivative ∂µ:

L = ψ̄∂µψ. (1.3)

Suppose ψ transforms under a local U(1) transformation as

ψ → ψ′ = e−iω(x)ψ. (1.4)

The transformed Lagrangian is

L′ = ψ̄′∂µψ
′

= eiω(x)ψ̄∂µ
(
e−iω(x)ψ

)
= eiω(x)ψ̄

(
e−iω(x)∂µψ − ie−iω(x)(∂µω(x))ψ

)
= ψ̄∂µψ − iψ̄(∂µω(x))ψ

= L− iψ̄(∂µω(x))ψ

(1.5)

The Lagrangian as it is is not invariant under this local transformation, con-

juring an extra term due to the spacetime derivative. We can, however, substitute

the covariant derivative

Dµ = ∂µ + iqAµ, (1.6)

where Aµ is a gauge field term which transforms as

Aµ → A′µ = Aµ −
1

q
∂µω(x). (1.7)

and q is the ‘coupling constant’, quantifying the strength of interaction between
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ψ and Aµ.

Aµ is specified in just such a way as to cancel out the extraneous terms arising

from the initial particle transformations, leaving the Lagrangian invariant:

L′ = ψ̄′Dµψ
′

= ψ̄′
(
∂µ + iqA′µ

)
ψ′

= ψ̄′∂µψ
′ + ψ̄′iqA′µψ

′

= ψ̄′∂µψ
′ + iqeiω(x)ψ̄(Aµ −

1

q
∂µω(x))e−iω(x)ψ′

= ψ̄∂µψ − iψ̄(∂µω(x))ψ + iqψ̄Aµψ − iψ̄(∂µω(x))ψ

= ψ̄ (∂µ + iqAµ)ψ

= ψ̄Dµψ

(1.8)

After gauging the field, we also observe terms that indicate the existence of

new particles: the gauge bosons. There will be different forms of gauge fields to

compensate for different types of transformations under which the fields trans-

form. The Standard Model Lagrangian is gauge invariant under SU(2)L×U(1)Y×
SU(3)c, which requires the appearance of the the W± and Z bosons and the pho-

ton (see section 1.2) from SU(2)L × U(1)Y as well as 8 gluons from SU(3)c.

We must add in for each boson Aµ a kinetic term,

Fµν = ∂µAν − ∂νAµ. (1.9)

This term is gauge invariant, but not Lorentz invariant. Thus the final addi-

tion must be a Lorentz scalar of the form FµνF
µν .

1.2 Spontaneous symmetry breaking

The gauging of the SM to compensate for transformations under the group

SU(2)L×U(1)Y initially predicted massless gauge bosons. However, experiments

measured large masses for both - 80.4 GeV for W± and 91.2 GeV for Z. To add

a mass term by hand would explicitly break the symmetry of the Lagrangian.

The solution, proposed by several groups in the 1960s, involves the existence of

a field which transforms under the same symmetry and has a non-zero minimum

3



potential value - a vacuum expectation value (vev) - upon which the masses of

the bosons depend. The existence of a vev which does not respect a symmetry

is known as spontaneous symmetry breaking, to contrast with explicit symmetry

breaking.

The relevant part of the SM Lagrangian is

LEW = −1

4
F a
µνF

aµν − 1

4
GµνG

µν + |DµH|2−V (H), (1.10)

where the kinetic terms for the gauge fields Bµ and Wµ are

F a
µν = ∂µW

a
ν − ∂νW a

µ − gfabcW b
µW

c
ν (1.11)

and

Gµν = ∂µBν − ∂νBµ, (1.12)

the covariant derivative of the ‘Higgs’ field H is

Dµ = ∂µ +
ig′

2
Bµ +

ig

2
τ iW i

µ, (i = 1, 2, 3) (1.13)

with τ i representing the Pauli matrices, and the potential is given by

V (H) = −µ2H†iH
i + λ(H†iH

i)2. (1.14)

Bµ and Wµ are the gauge fields associated with local U(1)Y and SU(2)L sym-

metries respectively and the Higgs is a complex doublet with coupling constants

g and g′ with the gauge fields.

The negative sign before µ creates the famous ‘Mexican hat’ potential, with

a non-zero minimum value. Solving for the minimum with respect to H, we find

〈H〉 = eiθ

(
0
µ√
2λ

)
. (1.15)

There are thus an infinite number of degenerate vacuua distinguished by their

phase. Visually, these lie along the valley of the potential in Figure 1.1. The

choice of phase breaks the symmetry spontaneously. We choose θ = 0 to obtain

4



Figure 1.1: The ‘Mexican hat’ potential of the Higgs field.

the vev

v =

√
µ2

λ
, (1.16)

And expand the Higgs doublet around this value:

H =

(
g1

1√
2
(v + h+ ig0)

)
. (1.17)

In the unitary gauge, the g0 and g1 terms (the Goldstone bosons) can be

gauged away to zero. We insert this doublet into 1.10, and substitute:

W±
µ =

W 1
µ ∓W 2

µ√
2

,

W 0
µ = W 3

µ ,

(1.18)

so that

5



|DµH|2 =
1

2
(∂µh)2 +

g2v2

4
W+µW−

µ +
v2

8
(gW 0

µ − g′Bµ)2

+
g2

4
W+µW−

µ (2vh+ h2) +
1

8
(gW 0

µ − g′Bµ)2(2vh+ h2).

(1.19)

We find mass terms for W±,W 0 and B, and also a mass term in W 0
µBµ. This

is an example of mass mixing. The W 0 and B fields are linear combinations of

the ‘mass eigenstate’ fields Aµ and Zµ (identified with the photon and Z boson

respectively): (
Z

A

)
=

(
cos θW − sin θW

sin θW cos θW

)(
W 0

B0

)
, (1.20)

were θW is the Weinberg angle.

By inserting the correct linear combinations, the system is diagonalised i.e.

it is expressed in terms of Aµ and Zµ, which have no mass mixing: they are the

observable mass eigenstates. The Lagrangian becomes:

LEW = +
1

2

(
(∂µh)2 − µ2h2)

)
− 1

4
(∂µW

+
ν − ∂νW+

µ )(∂µW+ν − ∂νW+µ) +
1

8
g2v2W+2

− 1

4
(∂µW

−
ν − ∂νW−

µ )(∂µW−ν − ∂νW−µ) +
1

8
g2v2W−2

− 1

4
(∂µZν − ∂νZµ)(∂µZν − ∂νZµ) +

1

8
(g2 + g′2)2v2Z2

− 1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ).

(1.21)

The boson masses are:

MW± =
gv

2

MZ =
v

2
(g2 + g′2)1/2

Mγ =
1

2

(
g2

1 + g2
2

)
sin2 θW = 0

(1.22)
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from which it is quite clear the weak boson masses arise from the non-zero value

of the Higgs vev and that the photon is massless due to the choice of the unitary

gauge. The degrees of freedom belonging to the Higgs (the Goldstone bosons) are

eaten by the electroweak bosons’ longitudinal components, giving them a mass

degree of freedom.

1.3 Yukawa interactions

SM fermions also lack masses before the Higgs develops a vev. They gain the

mass during SSB due to their involvement in a Yakawa interaction; a term of

the Lagrangian that mixes left-handed doublet and right-handed singlet fermions

with the Higgs field.

LY akawa = −λf f̄L
i
HifR + h.c. (1.23)

such that the entire term has zero net charge under all symmetries. For example,

for the case of hypercharge Y in the Yakawa interaction between leptons and the

Higgs scalar:

Y (l̄L
i
) =

1

2
,

Y (eR) = −1,

Y (H) =
1

2
,

(1.24)

and therefore

Ytot = −1 +
1

2
+

1

2
= 0. (1.25)

When the Higgs is expanded about its vev, the fermion picks up a mass term

dependent on that vev.
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Figure 1.2: Decays of the SM Higgs to SM particles (taken from [12]).

1.4 Higgs decay and invisible states

The Higgs decays into other SM particles either directly or via loops, with decay

rates predicted by the theory dependent on the Higgs mass mh (see Figure 1.2).

Higgs searches at the LHC measured a signal at 125 GeV in 2012, now positively

identified as the Higgs [5].

The decay rate of a particle to its products is usually calculated by construct-

ing a Feynman diagram of the decay; the factor associated with the vertex is the

coefficient of the relevant term in the Lagrangian. The Higgs couples to all mas-

sive SM particles and interacts with any particle with which it shares a suitable

Lagrangian term.

In this report, we will discuss the possibility of Higgs interaction with non-SM

‘hidden’ states. It has been calculated in [1] that the branching ratio to ‘invisible’

states of the Higgs with SM couplings but additional decay modes is:

Binvis < 0.23. (1.26)
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1.4.1 Higgs portals

Along with the fields charged under the SM symmetry SU(2)L×U(1)Y ×SU(3)c,

there is no reason not to suppose the existence of fields charged under non-SM

symmetries, which may be added to the SM Lagrangian as a ‘hidden sector’. If,

in addition, a term is added to the Higgs sector potential (1.14) which mixes a

new scalar field φ with H, one can couple SM particles to further hidden fields

through the mass mixing between the boson of the H field and that of the hidden

scalar field (see [10] for a brief overview).

One procedure (explored in [13] and [3]) is to suppose the existence of a

complex scalar field φ which is charged under a non-SM U(1) symmetry, U(1)D

but is a singlet under the SM gauge symmetries. We have employed this approach

in this project, introducing mixing between φ and the Higgs field and showing

how this leads to the coupling of the diagonalised mass state φ′ and the SM

particles. We then propose two fermionic fields Ψ1 and Ψ2, which interact with

φ via a Yakawa term, and observe that this leads to coupling of the Ψs to h′ and

φ′, and, through that ‘portal’, to the SM particles.

Other approaches include using different forms of the hidden fields and their

couplings in the potential (e.g. [7]), or requiring symmetry under different trans-

formations such as Z2 [6].

1.4.2 Calculating cross sections and decays

It will at some stage of the report be necessary for us to derive the decay widths

Γ and interaction cross sections σ for various processes in order to compare our

model with observations. This involves first calculating the matrix element M

for each interaction, and then integrating over the phase space of the final states.

For the interaction 1+2→ 3+4, the interaction cross section is given by [11]:

dσ =
1

vrel

1

2p0
1

1

2p0
2

|M|2(2π)4δ(4)(p1 + p2 − p3 − p4)
d3p3

(2π)3

1

2p0
3

d3p4

(2π)3

1

2p0
4

, (1.27)

where vrel is the relative velocity between 1 and 2.

For a particle A decaying to final states f with momenta pf , the decay width
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is given by [11]:

dΓ =
1

2mA

∏
f

(
d3p

(2π)3

1

2p0
f

)
|M(mA → pf )|2(2π)4δ(4)(pA −

∑
pf ). (1.28)

For a two-particle final state, this simplifies to

Γ =
1

2mA

∫
d3p

(2π)3

1

2p0

d3k

(2π)3

1

2k0
|M(p, k)|2 δ(4)(q − (p+ k)). (1.29)

The phase-space integrals in both cases are carried out over all possible final

states of those particles. This means, in the case of identical final particles, that

the integral overestimates the cross section by a factor of 2, by double counting

identical arrangements. This is accounted for by dividing such cross sections by

a symmetry factor S = 2, as will be seen in Chapter 3 in the derivations of the

phase space of identical final states (those of φ′φ′, h′h′ and ZZ).

1.5 Dark Matter

In Chapter 3 we will propose that our hidden fermionic field may serve as a

candidate for Dark Matter. It must therefore fulfil several broad criteria on first

inspection: it must be non-luminous, uncharged under electromagnetism, and

be stable or extremely long-lived; the interaction between DM and SM particles

must be very weak [9].

1.5.1 DM freeze-out

One can suppose that at early times, dark matter was in thermal equilibrium

with the rest of the universe, and the rate of production was equal to that of an-

nihilation. At some point, the expansion of the universe overtakes the interaction

rate and the Dark Matter is decoupled from the cosmic plasma. After this, the

number density per comoving volume is frozen out at a relic density, no longer

suppressed by the equilibrium exponential factor [9], [8] - see Figure 1.3.
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Figure 1.3: Abundance of a massive particle at thermal equilibrium (solid line)
and after freeze-out (dashed lines) (taken from [8]).

We will assume in our calculations that the freeze-out temperature is below

the mass of the DM - i.e., freeze-out occurs after the DM particles have become

non-relativistic.

Following the argument in [8], we can expect the thermal average of the annihi-

lation cross section multiplied by the relative velocity 〈σv〉 to go as T n, depending

on the angular momentum quantum number of the interaction. We can therefore

expand in terms of 〈v2〉 ∝ T [2]:

〈σv〉 = a+ b〈v2〉+ O(v4)

≈ a+
6b

x
,

(1.30)

where x = 〈v2〉−1 = m/T .

If a 6= 0, the annihilation is dominated by s-wave (l = 0) interactions. Oth-

erwise, the second term on the RHS, representing p-wave (l = 1) interactions,

dominates. The physical significance of this relates to the conservation of to-

tal angular momentum in the interaction. We anticipate that for our fermionic
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species (each spin 1/2) going to other states via a scalar (spin 0), all interactions

will necessarily be p-wave.

We can express the dominant term as:

〈σv〉 ≈ σ0x
−n, (1.31)

where n = 0 if a 6= 0, and n = 1 if a = 0, b 6= 0.

The relic abundance Y∞ of DM can be found by solving the Boltzmann equa-

tion, arriving at [8]:

Y∞ =
3.97(n+ 1)xf

(g∗S/
√
g∗)mΨmPl〈σv〉

=
3.97(n+ 1)xn+1

f

(g∗S/
√
g∗)mΨmPlσ0

, (1.32)

and an expression for the mass density:

ΩΨh
2 = 2.82× 108mΨY∞ GeV−1. (1.33)

g∗ is the effective number of relativistic degrees of freedom and g∗S the effective

number of relativistic degrees of freedom for entropy:

g∗ =
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑
j=fermions

gj

(
Ti
T

)4

,

g∗S =
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑
j=fermions

gj

(
Ti
T

)3

,

(1.34)

where T is the temperature of the thermal bath, and Ti that of the individual

species. These temperatures would naturally be equal when the species is in

thermal equilibrium.

By comparing this with the observed value of ΩΨh
2 = 0.11 [8], we can evaluate

the validity of our model for DM.

12



Chapter 2

The complex scalar field φ

2.1 Extending the potential

Our new particle φ is a complex scalar, charged under a non-SM U(1)D symmetry.

Mixing between φ and the Higgs is introduced into our modified potential:

V (H,φ) = −µH |H|2+λH |H|4−µφ|φ|2+λφ|φ|4+λ3|H|2|φ|2. (2.1)

Due to the negative signs before µH and µφ, both H and φ develop vacuum

expectation values. Differentiating to find the minimum gives us:

vh =

√
2λ3µ2

φ − 4λφµ2
H

λ2
3 − 4Hλφ

vφ =

√
2λ3µ2

H − 4λHµ2
φ

λ2
3 − 4Hλφ

.

(2.2)

We expand both of our fields about their vevs:

H =

(
g1

1√
2
(vh + h+ ig0)

)
and

φ =
1√
2

(vφ + φr + iφi).

(2.3)

where h will be identified with the SM Higgs and g0 and g1 represent the Goldstone

13



bosons.

Substituting these back into the potential, we find that g0, g1 and φi are

massless, as expected, and that there has emerged a mass term which mixes h

and φr,

λ3vHvφhφr. (2.4)

Here we will choose the unitary gauge, in which g0, g1 and φi are set to zero,

rendering the full potential

VU(h, φ) = [
1

4
vHλ3− 1

2
µ2
H +

3

2
v2
HλH ]h2 + [

1

2
vHv

2
φλ3 + v3

HλH − vHµ2
H ]h+

1

4
λHh

4

+ vHλHh
3 +

1

2
vφλ3h

2φr + vHvφλ3hφr +
1

4
λ3h

2φ2
r +

1

2
vHλ3hφ

2
r

+ [
1

2
v2
Hvφλ3 + v3

φλphi − vφµ2
φ]φr + [

1

4
v2
Hλ3 +

3

2
v3
φλφ −

1

2
µ2
φ]φ2

r + vφλφφ
3
r

+
1

4
λφφ4

r +
1

4
v2
Hv

2
φλ3 +

1

4
v4
HλH +

1

4
v4
φλφ −

1

2
v2
Hµ

2
H −

1

2
v2
φµ

2
φ.

(2.5)

2.2 Diagonalising the mass matrix

Such mass mixing as occurs between h and φr means that these fields do not

represent the observable mass eigenstates. The system must be diagonalised, as

was the case for the Bµ and W 0
µ bosons in section (1.2). We must derive the

mixing angle between h and φr and our mass eigenstates, which we shall call h′

and φ′. (
h

φr

)
=

(
cos θ − sin θ

sin θ cos θ

)(
h′

φ′

)
(2.6)

We obtain the mixing matrix elements from the coefficients of the h2, φ2
r and

hφr terms, i.e.:

Lhφmix = m11h
2 +m22φ

2
r + (m12 +m21)hφr

=
(
h φr

)(m11 m12

m21 m22

)(
h

φr

)
(2.7)
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where

m11 =
1

4

(
v2
φλ3 + 6v2

hλh − 2µ2
h

)
m22 =

1

4

(
v2
hλ3 + 6v2

φλφ − 2µ2
φ

)
m12 = m21 =

1

2
vhvφλ3

(2.8)

We therefore require:

(
h φr

)(m11 m12

m21 m22

)(
h

φr

)
=
(
h′ φ′

)( cos θ sin θ

− sin θ cos θ

)(
m11 m12

m21 m22

)(
cos θ − sin θ

sin θ cos θ

)(
h′

φ′

)

=
(
h′ φ′

)(m2
h 0

0 m2
φ

)(
h′

φ′

)
= m2

hh
′2 +m2

φφ
′2,

(2.9)

where mh and mφ are clearly identified with the masses of h′ and φ′.

We can calculate θ by multiplying out the matrices, equating one of the off-

diagonal elements to zero, and using the fact that m12 = m21:

0 = −m11 sin θ cos θ −m12 sin2 θ +m21 cos2 θ +m22 sin θ cos θ

= m12(cos2 θ − sin2 θ) + (m22 −m11) sin θ cos θ

= m12 cos 2θ +
m22 −m11

2
sin 2θ

=⇒ tan 2θ =
2m12

m11 −m22

(2.10)

The full expression of θ in terms of λh, λφ, λ3, µh and µφ is given in Appendix

A.

If we express h and φr as linear combinations of h′ and φ′:

h = h′ cos θ − φ′ sin θ

φr = h′ sin θ + φ′ cos θ
(2.11)

and substitute these into (2.5) we find that there is no coupling between the mass

15



eigenstates, as expected.

VU(h′, φ′) =
1

4

[
λ3 (cos θh′ + vh − sin θφ′)

2
(sin θh′ + cos θφ′ + vφ)

2

+ λh (cos θh′ + vh − sin θφ′)
4 − 2µ2

h (cos θh′ + vh − sin θφ′)
2

+ λφ (sin θh′ + cos θφ′ + vφ)
4 − 2µ2

φ (sin θh′ + cos θφ′ + vφ)
2

]
.

(2.12)

The expanded expression of V (h′, φ′) is given in Appendix B.

2.3 The electroweak sector

We turn next to the electroweak kinetic sector of the SM Lagrangian, (1.10),

reproduced here:

LEW = −1

4
F a
µνF

aµν − 1

4
GµνG

µν + |DµH|2. (2.13)

where the terms are defined as in section 1.2.

Following the same procedure as before, we diagonalise the Bµ-Zµ system

and substitute of the Higgs expanded around its new vev. The Lagrangian now

contains the usual mass terms for the electroweak bosons.

MW =
gvh
2
,

MZ =
gvh
2

1

cos θW
.

(2.14)

We also naturally find couplings C between φ′ or h′ and the massive gauge

bosons, but not the photon, which are simply the SM couplings (1.21) modulated

by sin θ or cos θ.

C(h′W±W∓) =
g2vh

2
cos θ

C(φ′W±W∓) =
g2vh

2
sin θ

(2.15)
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2.4 The hidden U(1)D sector

Finally, we include the sector involving our proposed non-SM U(1)D group, and

we require that φ transforms under local U(1)D transformations, so that our

gauged U(1)D sector reads

LD = −1

4
KµνK

µν + |Dµφ|2, (2.16)

where Kµν is the kinetic term for the U(1)D boson Z ′µ and φ has the covariant

derivative with coupling constant gD:

Dµ = ∂µ + igDZ
′
µ. (2.17)

After SSB arising from the form of the potential in 2.1, we replace φ with the

expansion around its vev (2.3):

LD =
1

2
(∂µφr)

2 +
1

2
(∂µφi)

2 +
1

2
g2
DZ
′
µZ
′µ (φ2

r + φ2
i

)
− gDZ ′µ (φi∂µφr − φr∂µφi) + gDvφZ

′µ∂µφi + g2
DvφZ

′µZ ′µφr

+
1

2
g2
Dv

2
φZ
′
µZ
′µ.

(2.18)

The final term gives a mass to Z ′µ:

mZ′ = gDvφ. (2.19)

After substituting in the value of the vev (2.2) and choosing the unitary gauge

(φi = 0), we find:
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LD = g2
DZ
′2λ3µ

2
h − 2λhµφ

λ2
3 − 4λhλφ

+ g2
D sin θZ ′2h′

√
2λ3µ2

h − 4λhµ2
φ

λ2
3 − 4λhλφ

+ g2
D cos θZ ′2φ′

√
2λ3µ2

h − 4λhµ2
φ

λ2
3 − 4λhλφ

+
1

2
g2
D sin2 θZ ′2h′2

+
1

2
g2
D sin 2θZ ′2h′φ′ +

1

2
g2
D cos2 θZ ′2φ′2

+
1

2
sin2 θ (∂µh

′)
2

+
1

2
sin 2θ∂µh

′∂µφ′ +
1

2
cos2 θ (∂µφ

′)
2
.

(2.20)

Z ′µ couples to h′ and φ′ in the expected way in terms dependent on gD. How-

ever, we have chosen to assume here that the gD � 1, neglecting discussion of Z ′µ

hereafter:

LD ≈
1

2
sin2 θ (∂µh

′)
2

+
1

2
sin 2θ∂µh

′∂µφ′ +
1

2
cos2 θ (∂µφ

′)
2
. (2.21)

2.5 Decay width Γ(h′ → φ′φ′)

Our Lagrangian so far is the combination of 2.13, 2.21 and 2.12:

L = LEW + LD − V (h′, φ′). (2.22)

From this we can derive the Feynman rules for the theory. There are many

diagrams in our full Lagrangian; we focus in particular on matrix element for the

interaction of h′ with φ′φ′ - this represents the Feynman diagram (2.1).

We can extract the matrix element (which is comprised purely of the vertex

factor) in terms of θ:

M(h′ → φ′φ′) =
1

4
cos θvh

[
(3 cos 2θ − 1)λ3 + 12 sin2 θλh

]
− 1

4
sin θvφ

[
(3 cos 2θ + 1)λ3 − 12 sin2 θλφ

] (2.23)

The remaining vertex factors between h′ and φ′ are given in Appendix C.

In the case of the decay of h′ to identical φ′ states, M is independent of
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Figure 2.1: Decay of h′ to φ′φ′

momenta, consisting as it does purely of the vertex factor, and we can simplify

as follows [11]:

Γ =
1

2mh

|M|2 1

8π

|p|
Ecm

(2.24)

where |p| is the momentum of the final particles in the centre-of-mass frame (i.e.

the Higgs’ rest frame), Ecm = mh and we have divided by the symmetry factor

S = 2.

In the rest frame of the Higgs (where the momenta are as shown in Figure

2.1),

q0 = mh

q = 0

p = −k

p0 = k0 =
√
m2
φ + |p|2

p.k =
m2
h − 2m2

φ

2

and

|p|=
√
m2
h

4
−m2

φ (2.25)

Thus:
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Γ =
1

4mh

1

128π
[cos θvh

(
(3 cos 2θ − 1)λ3 + 12 sin2 θλh

)
− 1

4
sin θvφ

(
(3 cos 2θ + 1)λ3 − 12 sin2 θλφ

)
]2

√
1−

4m2
φ

m2
h

(2.26)

We now have the decay width in terms of our 5 parameters µH , µφ, λH , λφ and

λ3, and also of mφ. Our next task must be to fix some of these parameters to

give a meaningful decay width as a function of those remaining.

2.5.1 Fixing the parameters

We identify h′ with the SM Higgs and so:

mh = 125 GeV

vH = 246 GeV
(2.27)

We consider the case where h′ decays to two φ′s. For this decay to be kine-

matically permitted, we must require that mφ ≤ mh

2
. For the sake of argument,

we choose:

mφ = 20 GeV. (2.28)

This allows us to solve for 3 parameters in terms of λ3 and λφ. We further

require that our h′ couples to the W boson (see 2.15) with a magnitude that is

within error of the measured value for SM Higgs-W coupling. Considering the

uncertainties set out in [4], we will require the coupling to be within 10% of the

observed value.

g2vh
2

cos θ ≥ 0.9
g2vh

2

∴ cos θ ≥ 0.9

(2.29)

In Figure 2.2, values of λ3 and λφ which fulfil the requirement in (2.29) are

filled in.

Both λ3 and λφ must be appreciably smaller than 4π to allow for perturba-

tive expansions. This can be schematically justified by examining the series of
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Figure 2.2: Values of cos θ ≥ 0.9 as a function of λ3 and λφ.

diagrams in Figure 2.3. The first diagram will produce a matrix element pro-

portional to λ; the second (loop) diagram contains a logarithmic divergence in

a phase space integral inside the matrix element. This can be accommodated,

producing a factor of λ3/(4π)2. The ratio between successive diagrams is then

λ2/(4π)2:

λ

(
1 +

λ2

(4π)2
+ ...

)
(2.30)

For the series to be perturbative then, λ� 4π.

We also might require that the branching ratio B(h′ → φ′φ′) be less than or

equal to the experimental limit, 0.23 (see section 1.4). This requirement generates

the graph in Figure 2.4. We can see that the allowed values coincide at very low

values of λ3. We therefore choose:

λ3 = 0.01

λφ = 0.5
(2.31)

which gives us a value of 0.999997 for cos θ, 0.139032 for the branching ratio, and

Γ(h′ → φ′φ′) = 0.00053128.

21



Figure 2.3: Expansion of Γ(s→ f̄f).

Figure 2.4: Values of λ3 and λφ for which B(h′ → φ′φ′) ≤ 0.9
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Chapter 3

The fermion Ψ

We suppose that two non-SM fermionic fields Ψ1 and Ψ2 exist and are charged

under U(1)D. We add a Yakawa term to our Lagrangian between the two fields

and our scalar field φ, such that the term has zero net U(1)D charge:

LY ukawa = −λΨφΨ1Ψ2 + h.c. (3.1)

After substituting from (2.11), we have the Lagrangian:

LY ukawa = − λΨ√
2

[sin θΨ̄1Ψ2h
′ + cos θΨ̄1Ψ2φ

′ + vφΨ̄1Ψ2] + h.c.

There is coupling to both h′ and φ′ dependent on the magnitude of θ, as

expected. For small θ, the fermions will interact predominantly via φ′.

3.1 Γ(h′ → Ψ1Ψ2)

This represents the Feynman diagram in Figure 3.1, in which the mass eigenstate

h′ decays into two hidden sector fermions.

Using the spinors v̄s1(p) and us2(k) for the outgoing Ψ1 and Ψ2 and averaging

over their initial spins, the matrix element is
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Figure 3.1: Decay of h′ to Ψ̄1 and Ψ2.

|M(h′ → Ψ1Ψ2)|2 =
λ2

Ψ sin2 θ

8

∑
s1,s2

(ūs2vs1)∗(ūs2vs1)

=
λ2

Ψ sin2 θ

8

∑
s1,s2

(us2∗α γ0αβvs1β )∗(us2∗µ γ0µνvs1ν )

=
λ2

Ψ sin2 θ

8

∑
s1,s2

us2α γ
0αβvs1∗β us2∗µ γ0µνvs1ν )

=
λ2

Ψ sin2 θ

8

(∑
s2

us2α ū
s2
ν

)(∑
s1

vs1ν v̄
s1
α

)

=
λ2

Ψ sin2 θ

8

(
/p+m2

)
αν

(/k −m1)να

=
λ2

Ψ sin2 θ

8
Tr
[(
/p+m2

)
(/k −m1)

]
=
λ2

Ψ sin2 θ

4
Tr
[
/p/k −m1/p+m2/k −m1m2

]
.

(3.3)

In the rest frame of the Higgs:

m2
h = (p+ k)2,

= p2 + k2 + 2p.k,

∴ p.k =
1

2
(m2

h −m2
1 −m2

2).

(3.4)

Thus we have
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|M(h′ → Ψ1Ψ2)|2 =
λ2

Ψ sin2 θ

8
(4p.k − 4m1m2)

=
λ2

Ψ sin2 θ

4
(m2

h −m2
1 −m2

2 − 2m1m2)

=
λ2

Ψ sin2 θ

4
(m2

h − (m1 +m2)2).

(3.5)

Our procedure for the phase space integral is similar to that in section 2.5,

except that now p0 and k0 are no longer identical. We again take (2.24) as a

starting point.

In the Higgs’ rest frame,

|p|=
√

[m2
h − (m1 +m2)2][m2

h − (m1 −m2)2]

2mh

, (3.6)

giving us:

Γ(h′ → Ψ1Ψ2) =
1

8π

2|p|
m2
h

|M|2

=
λ2
ψ sin2 θ

32πm3
h

[m2
h − (m2

1 +m2
2)]
√

[m2
h − (m1 +m2)2][m2

h − (m1 −m2)2]

=
λ2
ψ sin2 θ

32πm3
h

[m2
h − (m2

1 +m2
2)]

3
2 [m2

h − (m1 −m2)2]
1
2 .

(3.7)

Note: the symmetry factor here is equal to unity since the final states are

distinguishable.

This derivation would be useful when considering the case of light hidden

sector fermions. For the remainder of this report, however, we will be examining

the case of heavy Dark Matter, to which the Higgs does not decay.

3.2 Ψ annihilation cross sections

3.2.1 σ(Ψ̄1Ψ2 → ss)

We first examine the cross section of two hidden sector fermions to the scalar

states φ′ and h′.
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Figure 3.2: Annihilation of Ψ̄1 and Ψ2 to scalar states.

Figure 3.2 represents three possible final states, each with two possible inter-

mediate particles (i.e. six diagrams):

M(Ψ̄1Ψ2 → φ′φ′) = M(Ψ̄1Ψ2 → φ′ → φ′φ′) + M(Ψ̄1Ψ2 → h′ → φ′φ′)

M(Ψ̄1Ψ2 → h′h′) = M(Ψ̄1Ψ2 → φ′ → h′h′) + M(Ψ̄1Ψ2 → h′ → h′h′)

M(Ψ̄1Ψ2 → φ′h′) = M(Ψ̄1Ψ2 → φ′ → φ′h′) + M(Ψ̄1Ψ2 → h′ → φ′h′)

(3.8)

so that, for instance, contribution to the cross section for annihilation to h′h′ is

|M(Ψ̄1Ψ2 → h′h′)|2= |M(φ′)|2+|M(h′)|2+M̄(φ′)M(h′) + M̄(h′)M(φ′) (3.9)

Each diagram produces a matrix element of the general form:

ūs1(p′)vs2(p)
AiAj

q2 −m2
j + iε

(3.10)

where i refers to the final states, j to the intermediate.

We can perform the same operations for the Ψ spinors as in (3.5), save that

mh is replaced with the centre-of-mass energy Ecm and we are now averaging over

spins (i.e. we divide by 4). The propagator for the intermediate state j is also

included and the vertex factors A depend on which version of diagram is under

consideration. For simplicity, we assume the scattering is sufficiently off-shell to

neglect the third term in the propagator.
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Therefore our matrix elements (suppressing the sum and average symbols and

dividing by the appropriate symmetry factors) are:

|M(Ψ̄1Ψ2 → sisi)|2 = (E2
cm − (mΨ1 +mΨ2)

2)[
A2

Ψ̄Ψh
A2
hii

2(E2
cm −m2

h)
2

+
A2

Ψ̄Ψφ
A2
φii

2(E2
cm −m2

φ)2
+

AΨ̄ΨhAhiiAΨ̄ΨφAφii

(E2
cm −m2

h)(E
2
cm −m2

φ)

]
(3.11)

and

|M(Ψ̄1Ψ2 → h′φ′)|2 = (E2
cm − (mΨ1 +mΨ2)

2)[
A2

Ψ̄Ψh
A2
hhφ

2(E2
cm −m2

h)
2

+
A2

Ψ̄Ψφ
A2
hφφ

2(E2
cm −m2

φ)2
+

AΨ̄ΨhAhhφAΨ̄ΨφAhφφ

(E2
cm −m2

h)(E
2
cm −m2

φ)

]
(3.12)

where the vertex factors A are given in Figures 9 and 8.

The cross section 1.27 is:

dσ =
|M|2

4vrelE1E2

1

(2π)2
δ(4)((p+ p′)− (k + k′))

d3k

2E3

d3k′

2E4

=
|M|2

4vrelE1E2

1

(2π)2
δ((E1 + E2)− (E3 + E4))

d3k

4E3E4

=
|M|2

4vrelE1E2

|k|
(2π)2

δ

(
|k|−

√
(E2

cm − (m3 +m4)2)(E2
cm − (m3 −m4)2)

2Ecm

)
d|k|dΩ

4(E3 + E4)

(3.13)

We can use:

4vrelE1E2 = 2
√

(E2
cm − (m1 +m2)2)(E2

cm − (m1 −m2)2) (3.14)

giving us:
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σ(Ψ̄1Ψ2 → h′h′) =

√
E2
cm − 4m2

h

32πEcm

√
E2
cm − (mΨ1 +mΨ2)

2

E2
cm − (mΨ1 −mΨ2)

2

[
A2

Ψ̄Ψh
A2
hhh

2(E2
cm −m2

h)
2

+
A2

Ψ̄Ψφ
A2
φhh

2(E2
cm −m2

φ)2
+

AΨ̄ΨhAhhhAΨ̄ΨφAφhh

(E2
cm −m2

h)(E
2
cm −m2

φ)

]
(3.15)

σ(Ψ̄1Ψ2 → φ′φ′) =

√
E2
cm − 4m2

φ

32πEcm

√
E2
cm − (mΨ1 +mΨ2)

2

E2
cm − (mΨ1 −mΨ2)

2

[
A2

Ψ̄Ψh
A2
hφφ

2(E2
cm −m2

φ)2

+
A2

Ψ̄Ψφ
A2
φhh

2(E2
cm −m2

φ)2
+

AΨ̄ΨhAhφφAΨ̄ΨφAφhh

(E2
cm −m2

h)(E
2
cm −m2

φ)

]
(3.16)

σ(Ψ̄1Ψ2 → h′φ′) =

√
(E2

cm − (mφ +mh)2)(E2
cm − (mφ −mh)2)

16πE2
cm

√
E2
cm − (mΨ1 +mΨ2)

2

E2
cm − (mΨ1 −mΨ2)

2[
A2

Ψ̄Ψh
A2
hhφ

2(E2
cm −m2

h)
2

+
A2

Ψ̄Ψφ
A2
hφφ

2(E2
cm −m2

φ)2
+

AΨ̄ΨhAhφφAΨ̄ΨφAhφφ

(E2
cm −m2

h)(E
2
cm −m2

φ)

]
(3.17)

where we have divided by the appropriate symmetry factor depending on whether

the final states are identical.

3.2.2 σ(Ψ̄1Ψ2 → ff̄)

Figure 3.3 represents two diagrams, one for each intermediate state, so that

|M(Ψ̄1Ψ2 → ff̄)|2= |M(h′)|2+|M(φ′)|2+M̄(h′)M(φ′) + M̄(φ′)M(h′) (3.18)

Summing over the spins of the final states and averaging over the initial (with

q2 set to E2
cm):
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Figure 3.3: Annihilation of Ψ̄1 and Ψ2 to fermion states.

|M(si)|2 =
A2

Ψ̄Ψi
A2
if̄f

4(E2
cm −m2

i )
2

∑
s1,s2,s3,s4

(v̄s1us2)(w̄s3xs4)∗(v̄s1us2)∗(w̄s3xs4)

=
A2

Ψ̄Ψi
A2
if̄f

4(E2
cm −m2

i )
2

∑
s1,s2,s3,s4

(vs1∗α γ0αβus2β )(ws3µ γ
0µνxs4∗ν )(vs1δ γ

0δεus2∗ε )(ws3∗η γ0ηιxs4ι )

=
A2

Ψ̄Ψi
A2
if̄f

4(E2
cm −m2

i )
2

∑
s1,s2,s3,s4

(vs1δ v
s1∗
α γ0αβ)(us2β γ

0δεus2∗ε )(ws3µ w
s3∗
η γ0ηι)(xs4ι γ

0µνxs4∗ν )

=
A2

Ψ̄Ψi
A2
if̄f

4(E2
cm −m2

i )
2

(∑
s1

vs1δ v̄
s1
β

)(∑
s2

us2β ū
s2
δ

)(∑
s3

ws3µ w̄
s3
ι

)(∑
s4

xs4ι x̄
s4
µ

)

=
A2

Ψ̄Ψi
A2
if̄f

4(E2
cm −m2

i )
2

(/p′ −m1)δβ
(
/p+m2

)
βδ

(
/k′ −m3

)
µι

(/k +m4)ιµ

=
A2

Ψ̄Ψi
A2
if̄f

4(E2
cm −m2

i )
2
Tr
[
(/p′ −m1)

(
/p+m2

)]
Tr
[(
/k′ −m3

)
(/k +m4)

]
=

A2
Ψ̄Ψi

A2
if̄f

4(E2
cm −m2

i )
2
Tr
[
/p′/p−m1/p+m2 /p

′ −m1m2

]
Tr
[
/k′/k −m3/k +m4 /k

′ −m3m4

]
=

A2
Ψ̄Ψi

A2
if̄f

4(E2
cm −m2

i )
2
(4p.p′ − 4m1m2)(4k.k′ − 4m3m4)

=
A2

Ψ̄Ψi
A2
if̄f

(E2
cm −m2

i )
2
(E2

cm −m2
1 −m2

2 − 2m1m2)(E2
cm −m2

3 −m2
4 − 2m3m4)

=
A2

Ψ̄Ψi
A2
if̄f

(E2
cm −m2

i )
2
(E2

cm − (m1 +m2)2)(E2
cm − (m3 +m4)2)

(3.19)
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where AΨ̄Ψi is given in Figure 8, m3 = m4 = mf and Aif̄f is the usual SM coupling

of the Higgs to the fermions (mf/vh), multiplied by cos θ if the i = h′ and sin θ if

i = φ′, so that

AΨ̄ΨφAφf̄f = AΨ̄ΨhAhf̄f =
λΨmf

2
√

2vh
sin 2θ (3.20)

As m3 = m4 = mf , the entire matrix element simplifies slightly to:

|M(Ψ̄1Ψ2 → ff̄)|2 =
λ2

Ψm
2
f sin2 2θ

8v2
h

(E2
cm − (mΨ1 +mΨ2)

2)(E2
cm − 4m2

f )[
1

(E2
cm −m2

h)
2

+
1

(E2
cm −m2

φ)2
+

2

(E2
cm −m2

h)(E
2
cm −m2

φ)

]
(3.21)

The integral over phase space proceeds as before, giving us the decay cross

section:

σ(Ψ̄1Ψ2 → ff̄) =
λ2

Ψm
2
f sin2 2θ

128πv2
hEcm

√
E2
cm − (mΨ1 +mΨ2)

2

E2
cm − (mΨ1 −mΨ2)2

(E2
cm − 4m2

f )
3/2

[
1

(E2
cm −m2

h)
2

+
1

(E2
cm −m2

φ)2
+

2

(E2
cm −m2

h)(E
2
cm −m2

φ)

]
(3.22)

3.2.3 σ(Ψ̄1Ψ2 → V V̄ )

Again, Figure 3.4 represents two sets of two diagrams:

|M(Ψ̄1Ψ2 → V V̄ )|2= |M(h′)|2+|M(φ′)|2+M̄(h′)M(φ′) + M̄(φ′)M(h′) (3.23)

where V = W,Z.

Summing over boson polarisation states ε, averaging over fermion spins and

using the identity
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∑
λ=0,±

(ελµ(p))∗ελν(p) = −gµν +
pµpν
M2

, (3.24)

we have the general expression

|M(si)|2 =
A2

Ψ̄Ψi
A2
V̄ V i

4(E3
cm −m2

i )
2

∑
s1,s2

∑
λ1=0,±
λ2=0,±

v̄s1us2ελ1∗µ (k)ελ2ν (k′)gµνg
αβελ1α (k)ελ2∗β (k′)(v̄s1us2)∗

=
A2

Ψ̄Ψi
A2
V̄ V i

(E2
cm − (m1 +m2)2)

2(E3
cm −m2

i )
2

gµνg
αβ

( ∑
λ1=0,±

(ελ1µ (k))∗ελ1α (k)

)( ∑
λ2=0,±

(ελ2ν (k′))∗ελ2β (k′)

)

=
A2

Ψ̄Ψi
A2
V̄ V i

(E2
cm − (m1 +m2)2)

2(E3
cm −m2

i )
2

gµνg
αβ

(
−gµα +

kµkα
m2
V

)(
−gνβ +

k′νk
′
β

m2
V

)
=
A2

Ψ̄Ψi
A2
V̄ V i

(E2
cm − (m1 +m2)2)

2(E3
cm −m2

i )
2

gµνg
αβ

(
gµαgνβ − gµα

k′νk
′
β

m2
V

− gνβ
kµkα
m2
V

+
kµkαk

′
νk
′
β

m4
V

)
=
A2

Ψ̄Ψi
A2
V̄ V i

(E2
cm − (m1 +m2)2)

2(E3
cm −m2

i )
2

[
4− k′2

m2
V

− k2

m2
V

+
k.k′

m4
V

]
=
A2

Ψ̄Ψi
A2
V̄ V i

(E2
cm − (m1 +m2)2)

2(E3
cm −m2

i )
2

[
2− E4

cm + 4m4
V − 4E2

cmm
2
V

4m4
V

]
=
A2

Ψ̄Ψi
A2
V̄ V i

(E2
cm − (m1 +m2)2)

2(E3
cm −m2

i )
2

[
3 +

E4
cm

4m4
V

− E2
cm

m2
V

]
(3.25)

where the vertex factor AV̄ V i is the usual SM 2m2
V /vh multiplied by a trig func-

tion, and in analogy to (3.20), the product of vertex factors is given by

AΨ̄ΨφAV̄ V φ = AΨ̄ΨhAV̄ V h =
λΨm

2
V√

2vh
sin 2θ (3.26)

so that our final matrix element contribution is
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Figure 3.4: Annihilation of Ψ̄1 and Ψ2 to weak bosons.

|M(Ψ̄1Ψ2 → V V̄ )|2 =
λ2

Ψm
4
V sin2 2θ(E2

cm − (m1 +m2)2)

4v2
h

[
3 +

E4
cm

4m4
V

− E2
cm

m2
V[

1

(E2
cm −m2

h)
2

+
1

(E2
cm −m2

φ)2
+

2

(E2
cm −m2

h)(E
2
cm −m2

φ)

]
(3.27)

Finally, we have as before

σ(Ψ̄1Ψ2 → V V̄ ) =
λ2

Ψm
4
V sin2 2θ

64πv2
hEcm

√
E2
cm − 4m2

V

√
E2
cm − (mΨ1 +mΨ2)

2

E2
cm − (mΨ1 −mΨ2)

2[
3 +

E4
cm

4m4
V

− E2
cm

m2
V

][
1

(E2
cm −m2

h)
2

+
1

(E2
cm −m2

φ)2

+
2

(E2
cm −m2

h)(E
2
cm −m2

φ)

]
,

(3.28)

divided by a symmetry factor S = 2 for the annihilation to ZZ.

3.3 Cross section ratios

For the sake of convenience, we approximate m1 = m2 = mΨ, so that our cross

sections are given by:
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σ(Ψ̄1Ψ2 → h′h′) =

√
E2
cm − 4m2

h

32πE2
cm

√
E2
cm − 4m2

Ψ

[
A2

Ψ̄Ψh
A2
hhh

2(E2
cm −m2

h)
2

+
A2

Ψ̄Ψφ
A2
φhh

2(E2
cm −m2

φ)2
+

AΨ̄ΨhAhhhAΨ̄ΨφAφhh

(E2
cm −m2

h)(E
2
cm −m2

φ)

] (3.29)

σ(Ψ̄1Ψ2 → φ′φ′) =

√
E2
cm − 4m2

φ

32πE2
cm

√
E2
cm − 4m2

Ψ

[
A2

Ψ̄Ψh
A2
hφφ

2(E2
cm −m2

φ)2

+
A2

Ψ̄Ψφ
A2
φhh

2(E2
cm −m2

φ)2
+

AΨ̄ΨhAhφφAΨ̄ΨφAφhh

(E2
cm −m2

h)(E
2
cm −m2

φ)

] (3.30)

σ(Ψ̄1Ψ2 → h′φ′) =

√
(E2

cm − (mφ +mh)2)(E2
cm − (mφ −mh)2)

16πE3
cm

√
E2
cm − 4m2

Ψ[
A2

Ψ̄Ψh
A2
hhφ

2(E2
cm −m2

h)
2

+
A2

Ψ̄Ψφ
A2
hφφ

2(E2
cm −m2

φ)2
+

AΨ̄ΨhAhφφAΨ̄ΨφAhφφ

(E2
cm −m2

h)(E
2
cm −m2

φ)

]
(3.31)

σ(Ψ̄1Ψ2 → f̄f) =
λ2

Ψm
2
f sin2 2θ

128πv2
hE

2
cm

√
E2
cm − 4m2

f

E2
cm − 4m2

Ψ

(3.32)

σ(Ψ̄1Ψ2 → WW∗) =
λ2

Ψm
4
V sin2 2θ

64πv2
hE

2
cm

√
E2
cm − 4m2

W

E2
cm − 4m2

Ψ

(3.33)

σ(Ψ̄1Ψ2 → ZZ) =
λ2

Ψm
4
V sin2 2θ

128πv2
hE

2
cm

√
E2
cm − 4m2

Z

E2
cm − 4m2

Ψ

(3.34)

We then have two free parameters - λΨ and the mass of Ψ, which however do

not affect the cross section ratios, which are plotted in Figure 3.5.

As can be easily seen from Figure 3.5, the dominant annihilation channel of

the Ψ̄Ψ interaction is that to h′φ′, followed closely by φ′φ′ (seen more closely in

Figure 3.6) and lagged by a long way by h′h′. We notice that in limits of small θ:
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Figure 3.5: Cross section ratios of the annihilation of two Ψs to SM particles and
scalars as a function of centre-of-mass energy (mΨ = 100 GeV).

Figure 3.6: Cross section ratios of the annihilation of two Ψs to scalars φ′φ′ and
h′φ′ (mΨ = 100 GeV).

34



Ahhh ≈ 2vhλh

Aφφφ ≈ 2vφλφ

Ahhφ ≈ (vφλ3)/2

Ahφφ ≈ (vhλ3)/2

(3.35)

Due to the negligible coupling of Ψ to h′ in this limit, one can approximate

the cross sections to include only those due to an intermediate φ. In this case:

σ(→ h′h′) ∝ λ2
Ψv

2
φλ

2
3

σ(→ φ′φ′) ∝ λ2
Ψv

2
φλ

2
φ

σ(→ h′φ′) ∝ λ2
Ψv

2
hλ

2
3

(3.36)

It can be seen that while decays to both h′h′ and h′φ′ are suppressed by our

choice of a small λ3, the decay to h′φ′ is promoted by its dependence on the large

Higgs vev.

3.4 The relic abundance of Ψ

3.4.1 Expanding 〈σvrel〉

Assuming that freeze-out occurs after Ψ has become non-relativistic (see section

1.5.1), we can expand the 〈σvrel〉 by substituting Ecm with an expression in terms

of vrel:

Ecm = 2EΨ = 2γΨmΨ

=
2mΨ√
1− v2

Ψ

=
2mΨ√
1− v2rel

4

(3.37)

where we have made the non-relativistic substitution vrel = 2vΨ.
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3.4.2 Choosing parameters

In order to calculate the current DM mass density, we choose the mass of our

fermion such that

mΨ = 100 GeV,

Tf =
mΨ

25
= 4 GeV,

and

xf = 25.

(3.38)

With these values, the DM would have been frozen out long before any other

particle species. Therefore,

g∗ = g∗S = 75.75. (3.39)

Where we have included the degrees of freedom listed in table 3.1 - omitting

φ′, t and h′, which would not be relativistic at this temperature.

Particle Mass gi
photon 0 2
gluon 0 16
u, ū 3 MeV 12
d, d̄ 6 MeV 12
s, s̄ 100 MeV 12
c, c̄ 1.2 GeV 12
e+, e− 0.511 MeV 4
µ+, µ− 105.7 MeV 4
τ+, τ− 1.777 GeV 4
νe, ν̄e 3 eV 2
νµ, ν̄µ 0.19 MeV 2
ντ , ν̄τ 18.2 MeV 2

TOTAL 75.75

Table 3.1: Relativistic degrees of freedom in the early universe at T ≈ 4 GeV.

Expanding each cross section in turn, we find that all of the annihilations take

place via p-wave interactions. Therefore we have no hesitation in adding together

all the kinematically-allowed cross sections (i.e. excluding those to h′h′ and t̄t),
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Figure 3.7: Comparison between calculated Ωh2 and the observed value.

and expanding similarly. Substituting our fixed parameters, we obtain

〈σv〉 = 1.37026× 10−9λ2
Ψv

2
rel + O(v4

rel). (3.40)

Substituting all these values into equations 1.32 and 1.33, we obtain:

Y∞ =
6.81642× 10−12

λ2
Ψ

Ωh2 =
0.192223

λ2
Ψ

(3.41)

We find (see Figure 3.7) that Ωh2 = 0.11 when λΨ = 1.32192. This latter value

satisfies the condition of being small enough in comparison to 4π to suppress loop

diagrams and allow for perturbative expansions of the interactions.
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Conclusion

The aim of this project was to gain familiarity with a few of the basic techniques

and concepts of theoretical particle physics, and then to apply them to a toy model

and see them in practice. While reading of the standard texts and recent papers

was helpful in outlining the theory, the best demonstration of the physics involved

was the working out, by hand and on computer, the effects of introducing vacuum

expectation values and extra fields and couplings. In addition, the investigation

was driven forward by the existence of a definite goal - that of proposing a new

Dark Matter candidate.

We supposed a non-SM symmetry U(1)D under which a complex scalar field

φ transformed, and gauging it with coupling constant gD. The first task was to

introduce a potential dependent on the Higgs field H and φ, with a term mixing

the two. This potential contained 5 free parameters (to add to the parameter gD),

two of mass dimension and three dimensionless. Both fields developed vacuum

expectation values which produced mass terms for the electroweak bosons and

the boson of U(1)D, Z ′. For the sake of argument, we dismissed gD as extremely

small (see discussion below). After choosing the unitary gauge, we diagonalised

the h− φr system and observed coupling between the mass eigenstate φ′ and the

particles of the SM.

We identified h′ with the SM Higgs (giving us the SM values for vh and mh),

and chose a value for φ′ of 20 GeV, allowing us to solve for three parameters.

We then calculated the decay rate of h′ → φ′φ′ in terms of the remaining two,

and imposed two further conditions: that the branching ratio not exceed that

calculated by others for Higgs decays to invisible states, and that the mixing

angle between h and φr be extremely small, to be in accord with measurements.

By taking into account the requirement of perturbativity, we were able to make
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a reasonable choice for the last two parameters.

We proposed further fermionic fields Ψ1 and Ψ2, also charged under U(1)D,

which coupled to φ in a Yakawa interaction, and thus to φ′ and h′. The Ψ fermions

could therefore interact with the particles of the SM in decay and annihilation

processes through the scalar states - the ‘Higgs portal’ approach. After calculating

the decay width of h′ → Ψ̄1Ψ2 as a function of the Ψ fermion masses, we selected

a mass of 100 GeV (forbidding the aforementioned decay) and calculated the

annihilation cross sections to h′, φ′, fermions and electroweak bosons, as a function

of the Yakawa coupling parameter λΨ.

We used these values to show that all the annihilations were p-wave inter-

actions, and calculated the relic abundance of the Ψ fermions, with a freeze-out

temperature of 4 GeV. Using this result, we calculated the mass density as a

function of λΨ and compared it with the observed value for Dark Matter. We

found that we could fit our model to observations with a reasonable value of λΨ.

Any student, when learning of the Standard Model and its symmetry groups,

must wonder if there are any further symmetries and fields out there, and what

effect the existence of such would have on the universe. We have shown here that

it is extremely fruitful to model these effects, constraining the parameters of our

model by reference to observations, as a method of approach to explore one of

the biggest areas of modern research - the search for Dark Matter.

Avenues of further investigation

It would be interesting to experiment with differing the masses of φ′ and Ψ to

look at more extreme cases for the parameters. If we made mφ > 2mh, however,

we would lose the constraint provided by requiring the B(h′ → φ′φ′) < 0.23 (see

section 2.5.1).

One of the grander assumptions we made was that the charge gD of φ under

U(1)D was very small. This allowed us to neglect all discussion of the U(1)D

gauge boson, Z ′µ. Indeed, gD would need to be extremely small to make this

approximation, as the mass of Z ′µ is equal to gDvφ, where vφ = 28 GeV in this

parameterisation. Raising the value of gD would enable access to a new range of
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interactions via a coupling of Ψ to Z ′µ, including direct production of Z ′µ at the

LHC, providing very strict further constraints on our parameters. The dynamics

of DM freeze-out would also be affected.

Another phenomenon worthy of investigation is that of kinematic mixing. As

described in section 1.1, gauge bosons have a kinetic term of the form Fµν , which

is gauge invariant in itself, but that the Lagrangian must have terms of the form

FµνF
µν in order to be Lorentz invariant. Thus a term mixing the kinetic terms

of two different gauge bosons would be both gauge and Lorentz invariant. For

example we could introduce a term between an electroweak Fµν term and that of

our hidden gauge boson Kµν :

LKM = −1

4
FµνK

µν (3.42)

When expanded (see equation 1.9), this would give mixing between the two

bosons. After diagonalising this system, we could make corrections to the mass

of the SM boson. By requiring that the mass remain within current precision of

the measured value, we can place a further restriction on the parameters.

It may also be fruitful to propose additional hidden symmetries of SU(2) and

SU(3) under which more interesting forms of hidden fields might transform.
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Appendix A: θ

θ = tan−1

[
1

λ3vhvφ

(
1

4

(
−2µ2

h + 6λhv
2
h + λ3v

2
φ

)
+

1

4

(
−λ3v

2
h + 2µ2

φ − 6λφv
2
φ

)
+

√
1

4

(
−2µ2

h + 6λhv2
h + λ3v2

φ

)
+

1

4

(
−λ3v2

h + 2µ2
φ − 6λφv2

φ

)2
+ λ2

3v
2
hv

2
φ

]

= tan−1

[
1

λ3

√
λ3µ2

φ − 2µ2
hλφ
√
λ3µ2

h − 2λhµ2
φ

(
λh(2λφ + λ3)µ2

φ − (2λh + λ3)µ2
hλφ

+
√
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3(λ3µ2
φ − 2µ2

hλφ)(λ3µ2
h − 2λhµ2

φ) + ((2λh + λ3)µ2
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Appendix B: V (h′, φ′)

V (h′, φ′) =
1

4
λh (h′)

4
cos4 θ +

1

4
λφ (φ′)

4
cos4 θ +
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λ3 (h′)
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hλh (h′)

2
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2
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Appendix C: Feynman rules

Figure 8: Vertex factors between Ψ̄1 and Ψ2 and the scalars h′ and φ′.
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Figure 9: Vertex factors between the scalars h′ and φ′.
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